
Part II

Talking the Talk

 See an example of how you can combine functions and repetitive tasks at
www.dummies.com/extras/beginningprogramming
withpython.

In this part . . .
 ✓ See how to create variables to hold data.

 ✓ Create functions to make code easier to read.

 ✓ Tell your Python application to make a decision.

 ✓ Perform repeating tasks.

 ✓ Ensure that your application can deal with errors.

Chapter 5

Storing and Modifying Information
In This Chapter

▶ Understanding data storage

▶ Considering the kinds of data storage

▶ Adding dates and times to applications

C

hapter 3 introduces you to CRUD, Create, Read, Update, and Delete — not
that Chapter 3 contains cruddy material. This acronym provides an easy

method to remember precisely what tasks all computer programs perform
with information you want to manage. Of course, geeks use a special term for
information — data, but either information or data works fine for this book.

 In order to make information useful, you have to have some means of storing
it permanently. Otherwise, every time you turned the computer off, all your
information would be gone and the computer would provide limited value. In
addition, Python must provide some rules for modifying information. The alter-
native is to have applications running amok, changing information in any and
every conceivable manner. This chapter is about controlling information —
defining how information is stored permanently and manipulated by applica-
tions you create.

Storing Information
An application requires fast access to information or else it will take a long
time to complete tasks. As a result, applications store information in memory.
However, memory is temporary. When you turn off the machine, the informa-
tion must be stored in some permanent form, such as on your hard drive, a
Universal Serial Bus (USB) flash drive, or a Secure Digital (SD) card. In addi-
tion, you must also consider the form of the information, such as whether it’s
a number or text. The following sections discuss the issue of storing informa-
tion as part of an application in more detail.

84 Part II: Talking the Talk

Seeing variables as storage boxes
When working with applications, you store information in variables. A variable
is a kind of storage box. Whenever you want to work with the information, you
access it using the variable. If you have new information you want to store,
you put it in a variable. Changing information means accessing the variable
first and then storing the new value in the variable. Just as you store things in
boxes in the real world, so you store things in variables (a kind of storage box)
when working with applications.

 Computers are actually pretty tidy. Each variable stores just one piece of infor-
mation. Using this technique makes it easy to find the particular piece of infor-
mation you need — unlike in your closet, where things from ancient Egypt could
be hidden. Even though the examples you work with in previous chapters don’t
use variables, most applications rely heavily on variables to make working with
information easier.

Using the right box to store the data
People tend to store things in the wrong sort of box. For example, you might
find a pair of shoes in a garment bag and a supply of pens in a shoebox.
However, Python likes to be neat. As a result, you find numbers stored in
one sort of variable and text stored in an entirely different kind of variable.
Yes, you use variables in both cases, but the variable is designed to store a
particular kind of information. Using specialized variables makes it possible
to work with the information inside in particular ways. You don’t need to
worry about the details just yet — just keep in mind that each kind of infor-
mation is stored in a special kind of variable.

 Python uses specialized variables to store information to make things easy for
the programmer and to ensure that the information remains safe. However,
computers don’t actually know about information types. All that the computer
knows about are 0s and 1s, which is the absence or presence of a voltage. At
a higher level, computers do work with numbers, but that’s the extent of what
computers do. Numbers, letters, dates, times, and any other kind of informa-
tion you can think about all come down to 0s and 1s in the computer system.
For example, the letter A is actually stored as 01000001 or the number 65. The
computer has no concept of the letter A or of a date such as 8/31/2014.

85 Chapter 5: Storing and Modifying Information

Defining the Essential Python Data Types
Every programming language defines variables that hold specific kinds of
information, and Python is no exception. The specific kind of variable is
called a data type. Knowing the data type of a variable is important because it
tells you what kind of information you find inside. In addition, when you want
to store information in a variable, you need a variable of the correct data
type to do it. Python doesn’t allow you to store text in a variable designed
to hold numeric information. Doing so would damage the text and cause
problems with the application. You can generally classify Python data types
as numeric, string, and Boolean, although there really isn’t any limit on just
how you can view them. The following sections describe each of the standard
Python data types within these classifications.

Putting information into variables
To place a value into any variable, you make an assignment using the assign-
ment operator (=). Chapter 6 discusses the whole range of basic Python
operators in more detail, but you need to know how to use this particular
operator to some extent now. For example, to place the number 5 into a
variable named myVar, you type myVar = 5 and press Enter at the Python
prompt. Even though Python doesn’t provide any additional information to
you, you can always type the variable name and press Enter to see the value
it contains, as shown in Figure 5-1.

Figure 5-1:

Use the

assignment

operator to

place infor­

mation into

a variable.

Understanding the numeric types
Humans tend to think about numbers in general terms. We view 1 and 1.0 as
being the same number — one of them simply has a decimal point. However,
as far as we’re concerned, the two numbers are equal and we could easily use
them interchangeably. Python views them as being different kinds of numbers

86 Part II: Talking the Talk

because each form requires a different kind of processing. The following sec-
tions describe the integer, floating-point, and complex number classes of data
types that Python supports.

Integers
Any whole number is an integer. For example, the value 1 is a whole number,
so it’s an integer. On the other hand, 1.0 isn’t a whole number; it has a deci-
mal part to it, so it’s not an integer. Integers are represented by the int
data type.

 As with storage boxes, variables have capacity limits. Trying to stuff a
value that’s too large into a storage box results in an error. On most plat-
forms, you can store numbers between –9,223,372,036,854,775,808 and
9,223,372,036,854,775,807 within an int (which is the maximum value that
fits in a 64-bit variable). Even though that’s a really large number, it isn’t
infinite.

When working with the int type, you have access to a number of interesting
features. Many of them appear later in the book, but one feature is the ability
to use different numeric bases:

 ✓ Base 2: Uses only 0 and 1 as numbers.

 ✓ Base 8: Uses the numbers 0 through 7.

 ✓ Base 10: Uses the usual numeric system.

 ✓ Base 16: Is also called hex and uses the numbers 0 through 9 and the let-
ters A through F to create 16 different possible values.

To tell Python when to use bases other than base 10, you add a 0 and a spe-
cial letter to the number. For example, 0b100 is the value one-zero-zero in
base 2. Here are the letters you normally use:

 ✓ b: Base 2

 ✓ o: Base 8

 ✓ x: Base 16

It’s also possible to convert numeric values to other bases using the bin(),
oct(), and hex() commands. So, putting everything together, you can see
how to convert between bases using the commands shown in Figure 5-2.
Try the command shown in the figure yourself so that you can see how the
various bases work. Using a different base actually makes things easier in
many situations, and you’ll encounter some of those situations later in the
book. For now, all you really need to know is that integers support different
numeric bases.

87 Chapter 5: Storing and Modifying Information

Figure 5-2:

Integers

have many

interesting

features,

including

the capabil­

ity to use

different

numeric

bases.

Floating-point values
Any number that includes a decimal portion is a floating-point value. For
example, 1.0 has a decimal part, so it’s a floating-point value. Many people get
confused about whole numbers and floating-point numbers, but the difference
is easy to remember. If you see a decimal in the number, then it’s a floating-
point value. Python stores floating-point values in the float data type.

 Floating-point values have an advantage over integer values in that you can
store immensely large or incredibly small values in them. As with integer vari-
ables, floating-point variables have a storage capacity. In their case, the maxi-
mum value that a variable can contain is ±1.7976931348623157 × 10308 and the
minimum value that a variable can contain is ±2.2250738585072014 × 10-308 on
most platforms.

When working with floating-point values, you can assign the information to
the variable in a number of ways. The two most common methods are to pro-
vide the number directly and to use scientific notation. When using scientific
notation, an e separates the number from its exponent. Figure 5-3 shows both
methods of making an assignment. Notice that using a negative exponent
results in a fractional value.

88 Part II: Talking the Talk

Figure 5-3:

Floating­

point values

provide

multiple

assignment

techniques.

Complex numbers
You may or may not remember complex numbers from school. A complex
number consists of a real number and an imaginary number that are paired
together. Just in case you’ve completely forgotten about complex numbers,
you can read about them at http://www.mathsisfun.com/numbers/
complex-numbers.html. Real-world uses for complex numbers include:

 ✓ Electrical engineering

 ✓ Fluid dynamics

 ✓ Quantum mechanics

 ✓ Computer graphics

 ✓ Dynamic systems

Complex numbers have other uses, too, but this list should give you some
ideas. In general, if you aren’t involved in any of these disciplines, you prob-
ably won’t ever encounter complex numbers. However, Python is one of the
few languages that provides a built-in data type to support them. As you
progress through the book, you find other ways in which Python lends itself
especially well to science and engineering.

The imaginary part of a complex number always appears with a j after it. So,
if you want to create a complex number with 3 as the real part and 4 as the
imaginary part, you make an assignment like this:

myComplex = 3 + 4j

If you want to see the real part of the variable, you simply type myComplex.
real at the Python prompt and press Enter. Likewise, if you want to see the
imaginary part of the variable, you type myComplex.imag at the Python
prompt and press Enter.

89 Chapter 5: Storing and Modifying Information

Understanding Boolean values
It may seem amazing, but computers always give you a straight answer! A
computer will never provide “maybe” as output. Every answer you get is either
True or False. In fact, there is an entire branch of mathematics called Boolean
algebra that was originally defined by George Boole (a super-geek of his time)
that computers rely upon to make decisions. Contrary to common belief,
Boolean algebra has existed since 1854 — long before the time of computers.

Understanding the need for multiple number types
A lot of new developers (and even some older
ones) have a hard time understanding why
there is a need for more than one numeric
type. After all, humans can use just one kind
of number. To understand the need for multiple
number types, you have to understand a little
about how a computer works with numbers.

An integer is stored in the computer as simply a
series of bits that the computer reads directly. A
value of 0100 in binary equates to a value of 4 in
decimal. On the other hand, numbers that have
decimal points are stored in an entirely different
manner. Think back to all those classes you slept
through on exponents in school — they actu­
ally come in handy sometimes. A floating­point
number is stored as a sign bit (plus or minus),
mantissa (the fractional part of the number), and
exponent (the power of 2). (Some texts use the
term significand in place of mantissa — the terms
are interchangeable.) To obtain the floating­point
value, you use the equation:

Value = Mantissa * 2^Exponent

At one time, computers all used different
floating­point representations, but they all
use the IEEE­754 standard now. You can read
about this standard at http://grouper.
ieee.org/groups/754/. A full explana­
tion of precisely how floating­point numbers
work is outside the scope of this book, but

you can read a fairly understandable descrip­
tion at http://www.cprogramming.
com/tutorial/floating_point/
understanding_floating_point_
representation.html. Nothing helps
you understand a concept like playing with the
values. You can find a really interesting float­
ing­point number converter at http://www.
h-schmidt.net/FloatConverter/
IEEE754.html, where you can click the
individual bits (to turn them off or on) and see
the floating­point number that results.

As you might imagine, floating­point num­
bers tend to consume more space in memory
because of their complexity. In addition, they use
an entirely different area of the processor —
one that works more slowly than the part used
for integer math. Finally, integers are precise,
as contrasted to floating­point numbers, which
can’t precisely represent some numbers, so you
get an approximation instead. However, floating­
point variables can store much larger numbers.
The bottom line is that decimals are unavoid­
able in the real world, so you need floating­point
numbers, but using integers when you can
reduces the amount of memory your application
consumes and helps it work faster. There are
many trade­offs in computer systems, and this
one is unavoidable.

90 Part II: Talking the Talk

When using Boolean value in Python, you rely on the bool type. A variable of
this type can contain only two values: True or False. You can assign a value
by using the True or False keywords, or you can create an expression that
defines a logical idea that equates to true or false. For example, you could
say, myBool = 1 > 2, which would equate to False because 1 is most defi-
nitely not greater than 2. You see the bool type used extensively in the book,
so don’t worry about understanding this concept right now.

Understanding strings
Of all the data types, strings are the most easily understood by humans and
not understood at all by computers. If you have read the previous chapters
in this book, you have already seen strings used quite. For example, all the
example code in Chapter 4 relies on strings. A string is simply any grouping
of characters you place within double quotes. For example, myString =
"Python is a great language." assigns a string of characters to
myString.

The computer doesn’t see letters at all. Every letter you use is represented
by a number in memory. For example, the letter A is actually the number 65.
To see this for yourself, type ord(“A”) at the Python prompt and press Enter.
You see 65 as output. It’s possible to convert any single letter to its numeric
equivalent using the ord() command.

Because the computer doesn’t really understand strings, but strings are so
useful in writing applications, you sometimes need to convert a string to a
number. You can use the int() and float() commands to perform this
conversion. For example, if you type myInt = int(“123”) and press Enter at the
Python prompt, you create an int named myInt that contains the value 123.
Figure 5-4 shows how you can perform this task and validate the content and
type of myInt.

Determining a variable’s type
Sometimes you might want to know the vari­
able type. Perhaps the type isn’t obvious from
the code or you’ve received the information
from a source whose code isn’t accessible.
Whenever you want to see the type of a vari­
able, use the type() method. For example,

if you start by placing a value of 5 in myInt
by typing myInt = 5 and pressing Enter, you can
find the type of myInt by typing type(myInt)
and pressing Enter. The output will be <class
'int'>, which means that myInt contains
an int value.

91 Chapter 5: Storing and Modifying Information

Figure 5-4:

Converting

a string to

a number

is easy

using the

int() and

float()

commands.

You can convert numbers to a string as well by using the str() command.
For example, if you type myStr = str(1234.56) and press Enter, you create
a string containing the value "1234.56" and assign it to myStr. Figure 5-5
shows this type of conversion and the test you can perform on it. The point
is that you can go back and forth between strings and numbers with great
ease. Later chapters demonstrate how these conversions make a lot of seem-
ingly impossible tasks quite doable.

Figure 5-5:

It’s possible

to convert

numbers to

strings as

well.

Working with Dates and Times
Dates and times are items that most people work with quite a bit. Society
bases almost everything on the date and time that a task needs to be or
was completed. We make appointments and plan events for specific dates
and times. Most of our day revolves around the clock. Because of the time-
oriented nature of humans, it’s a good idea to look at how Python deals with
interacting with dates and time (especially storing these values for later use).
As with everything else, computers understand only numbers — the date and
time don’t really exist.

 To work with dates and times, you need to perform a special task in Python.
When writing computer books, chicken-and-egg scenarios always arise, and
this is one of them. To use dates and times, you must issue a special import

92 Part II: Talking the Talk

datetime command. Technically, this act is called importing a module, and you
learn more about it in Chapter 10. Don’t worry how the command works right
now — just use it whenever you want to do something with date and time.

Computers do have clocks inside them, but the clocks are for the humans
using the computer. Yes, some software also depends on the clock, but again,
the emphasis is on human needs rather than anything the computer might
require. To get the current time, you can simply type datetime.datetime.
now() and press Enter. You see the full date and time information as found on
your computer’s clock (see Figure 5-6).

Figure 5-6:

Get the cur­

rent date

and time

using the

now()

command.

You may have noticed that the date and time are a little hard to read in the
existing format. Say that you want to get just the current date, in a readable
format. It’s time to combine a few things you discovered in previous sections
to accomplish that task. Type str(datetime.datetime.now().date()) and press
Enter. Figure 5-7 shows that you now have something a little more usable.

Figure 5-7:

Make the

date and

time more

readable

using the

str()

command.

Interestingly enough, Python also has a time() command, which you can
use to obtain the current time. You can obtain separate values for each of the
components that make up date and time using the day, month, year, hour,
minute, second, and microsecond values. Later chapters help you under-
stand how to use these various date and time features to keep application
users informed about the current date and time on their system.

